Maternal stress, viral infection, and obstetric complications, which trigger cytokine signaling, are hypothesized to be involved in schizophrenia and its related disorders. The etiologic contribution of individual cytokines to such psychiatric disorders, however, remains to be evaluated. To estimate the impact of peripheral cytokine challenge on neurobehavioral development, we examined effects of four proinflammatory cytokines on rat neonates and their later behavioral performance. Sublethal doses of interleukin-1 alpha, interleukin-2, interleukin-6, or interferon-gamma were subcutaneously administered to rat pups for 9 days. These animals displayed alterations in physical development, including lower weight gain and/or accelerated eyelid opening. In addition, behavioral abnormalities related to fear/anxiety levels and sensorimotor gating emerged at different developmental stages, depending on the cytokine species administered. During juvenile stages, neonatal interleukin-2 treatment increased exploratory locomotor activity, whereas other cytokine treatments did not. At the post-puberty stage, however, the interleukin-2-induced abnormal motor activity became undetectable, whereas interleukin-1 alpha-treated rats developed abnormalities in startle response, prepulse inhibition (PPI), and social interaction. Subchronic treatment of an anti-psychotic drug, clozapine, ameliorated the impairment of prepulse inhibition without altering startle responses. These animal experiments illustrate that, during early postnatal development, inflammatory cytokine challenge in the periphery can induce future psycho-behavioral and/or cognitive impairments with various latencies, although the pathologic mechanisms underlying these abnormalities remain to be determined.