Background:This work seeks to understand whether IL15-incorporating treatments improve response to radiotherapy and uncover mechanistic rationale for overcoming resistance to IL15 agonism using novel therapeutic combinations.
Experimental Design:Orthotopic tumor models of PDAC were used to determine response to treatment. IL15-/- and Rag1-/- mouse models were employed to determine dependence on IL15 and CTLs, respectively. Flow cytometry was used to assess immune cell frequency and activation state. Phospho-proteomic analyses were used to characterize intracellular signaling pathways.
Results:We show that the combination of radiation therapy (RT) and an IL15/IL15Ra fusion complex (denoted IL15c) fails to confer anti-tumor efficacy; however, a CD8-driven anti-tumor immune response is elicited with the concurrent administration of an aCD25 Treg-depleting antibody. Using IL15-/- and Rag1-/- mice, we demonstrate that response to RT + IL15c + aCD25 is dependent on both IL15 and CTLs. Furthermore, despite an equivalent survival benefit following treatment with RT + IL15c + aCD25 and combination RT + PD1-IL2v, a novel immunocytokine with PD-1 and IL2Rβγ binding domains, CTL immunophenotyping and phospho-proteomic analysis of intracellular metabolites showed significant upregulation of activation and functionality in CD8 T cells treated with RT + PD1-IL2v. Finally, we show the immunostimulatory response to RT + PD1-IL2v is significantly diminished with a concurrent lack of TCF+ CD8 T cell generation in the absence of functional IL15 signaling.
Conclusions:Our results are illustrative of a mechanism wherein unimpeded effector T cell activation through IL2Rβ signaling and Treg inhibition are necessary in mediating an anti-tumor immune response.