Class III drugs prolong the QT interval by blocking mainly the delayed rectifier rapid potassium outward current (IKr), with little effect on depolarization. This K(+) channel in encoded by the human ether-a-go-go-related gene (hERG). Inhibition of hERG potassium currents by class III antiarrhythmic drugs causes lengthening of cardiac action potential, which produces a beneficial antiarrhythmic effect. Excessive prolongation of the action potential may lead to acquired long QT syndrome, which is associated with a risk of "torsade de pointes". Class III agents can block all types of potassium channels: IKs, IKr, IKur and IK1. The main representing class III agent is amiodarone. It is the gold standard in the prevention of recurrence of atrial fibrillation. Although it is highly effective in treating many arrhythmias, large number of adverse effects limits its clinical use. Dronedarone is a synthetic amiodarone analogue, iodine-free compound, with fewer adverse effects, and shares amiodarone's multichannel blocking effects, inhibiting transmembrane Na+, IKs, IKur, IK1, and slow Ca(++)L-type calcium currents. The main new generation class III drugs are: dofetilide, dronedarone, azimilide, and ibutilide. Oral dofetilide did not increase mortality in patients with a recent myocardial infarction or congestive heart failure. It is an alternative for the pharmacological conversion of atrial fibrillation and flutter. Azimilide blocks both rapid and slow potassium channels components. Azimilide is not a methanesulfonanilide compound. Trecitilide, tedisamil, ersentilide, ambasilide, chromanol and sematilide are class III miscellaneous agents. Old mixed agents are sotalol and bretylium. The present article reviews the main trials accomplished with these drugs.