PURPOSEThe etiology of asthma remains elusive, with no known cure. Based on accumulating evidence, autophagy, a self-degradation process that maintains cellular metabolism and homeostasis, participates in the development of asthma. Mycobacterium vaccae vaccine (M. vaccae), an immunomodulatory agent, has previously been shown to effectively alleviate airway inflammation and airway remodeling. However, its therapeutic effect on asthma via the regulation of autophagy remains unknown. Therefore, this study aimed to investigate the impact of M. vaccae in attenuating asthma airway inflammation via autophagy-mediated pathways.METHODSBalb/c mice were used to generate an ovalbumin (OVA)-immunized allergic airway model and were subsequently administered either M. vaccae or M. vaccae + rapamycin (an autophagy activator) prior to each challenge. Next, airway inflammation, mucus secretion, and airway remodeling in mouse lung tissue were assessed via histological analyses. Lastly, the expression level of autophagy proteins LC3B, Beclin1, p62, and autolysosome was determined both in vivo and in vitro, along with the expression level of p-PI3K, PI3K, p-Akt, and Akt in mouse lung tissue.RESULTSThe findings indicated that aerosol inhalation of M. vaccae in an asthma mouse model has the potential to decrease eosinophil counts, alleviate airway inflammation, mucus secretion, and airway remodeling through the inhibition of autophagy. Likewise, M. vaccae could reduce the levels of OVA-specific lgE, IL-5, IL-13, and TNF-α in asthma mouse models by inhibiting autophagy. Furthermore, this study revealed that M. vaccae also suppressed autophagy in IL-13-stimulated BEAS-2B cells. Moreover, M. vaccae may activate the PI3K/Akt signaling pathway in the lung tissue of asthmatic mice.CONCLUSIONIn summary, the present study suggests that M. vaccae may contribute to alleviating airway inflammation and remodeling in allergic asthma by potentially modulating autophagy and the PI3K/Akt signaling pathway. These discoveries offer a promising avenue for the development of therapeutic interventions targeting allergic airway inflammation.