Necroptosis, necrosis characterized by RIPK3-MLKL activation, has been proposed as a mechanism of doxorubicin (DOX)-induced cardiomyopathy. We showed that rapamycin, an mTORC1 inhibitor, attenuates cardiomyocyte necroptosis. Here we examined role of MLKL in DOX-induced myocardial damage and protective effects of rapamycin. Cardiomyopathy was induced in mice by intraperitoneal injections of DOX (10 mg/kg, every other day) and followed for 7 days. DOX-treated mice showed a significant decline in LVEF assessed by cardiac MRI (45.5 ± 5.1% vs. 65.4 ± 4.2%), reduction in overall survival rates, and increases in myocardial RIPK3 and MLKL expression compared with those in vehicle-treated mice, and those changes were prevented by administration of rapamycin (0.25 mg/kg) before DOX injection. In immunohistochemical analyses, p-MLKL signals were detected in the cardiomyocytes of DOX-treated mice, and the signals were reduced by rapamycin. Mlkl+/- and Mlkl-/- mice were similarly resistant to DOX-induced cardiac dysfunction, indicating that a modest reduction in MLKL level is sufficient to prevent the development of DOX-induced cardiomyopathy. However, evidence of cardiomyocyte necrosis assessed by C9 immunostaining, presence of replacement fibrosis, and electron microscopic analyses was negligible in the myocardium of DOX-treated mice. Thus, MLKL-mediated signaling contributes to DOX-induced cardiac dysfunction primarily by a necrosis-independent mechanism, which is inhibitable by rapamycin.