Parkinson's disease is a growing threat to an ever-ageing population. Despite progress in our understanding of the molecular and cellular mechanisms underlying the disease, all therapeutics currently available only act to improve symptoms and do not stop the disease process. It is therefore imperative that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson's. Drug repurposing has been recognized as being equally as promising as de novo drug discovery in the field of neurodegeneration and Parkinson's disease specifically. In this work, we utilize a transgenic Drosophila model of Parkinson's disease, made by expressing human alpha-synuclein in the Drosophila brain, to validate two repurposed compounds: astemizole and ketoconazole. Both have been computationally predicted to have an ameliorative effect on Parkinson's disease, but neither had been tested using an in vivo model of the disease. After treating the flies in parallel, results showed that both drugs rescue the motor phenotype that is developed by the Drosophila model with age, but only ketoconazole treatment reversed the increased dopaminergic neuron death also observed in these models, which is a hallmark of Parkinson's disease. In addition to validating the predicted improvement in Parkinson's disease symptoms for both drugs and revealing the potential neuroprotective activity of ketoconazole, these results highlight the value of Drosophila models of Parkinson's disease as key tools in the context of in vivo drug discovery, drug repurposing, and prioritization of hits, especially when coupled with computational predictions.