In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage. However, the regeneration outcomes can be inconsistent. Given that hair cell development is regulated by multiple signalling and transcriptional factors in a temporal and spatial manner, a more complex combinatorial approach targeting additional transcription factors may be required for efficient hair cell regeneration. There is evidence that epigenetic factors are responsible for the lack in regenerative capacity of the deaf adult cochlea. This study aimed to develop a combined gene therapy approach to reprogram both the genome and epigenome of supporting cells to improve the efficiency of hair cell regeneration. Adult Pou4f3-DTR mice were used in which the administration of diphtheria toxin was used to ablate hair cells whilst leaving supporting cells relatively intact. A single adeno-associated viral construct was used to express human Atoh1, Pou4f3 and short hairpin RNA against Kdm1a (regeneration gene therapy) at two weeks following partial or severe hair cell ablation. The average transduction of the inner supporting cells, as measured by the control AAV2.7m8-GFP vector in the deaf cochlea, was only 8 % while transduction in the outer sensory region was <1 %. At 4- and 6-weeks post-treatment the number of Myo+ hair cells in the control and regeneration gene therapy-treated mice were not significantly different. Of note, although both control and regeneration gene therapy treated cochleae contained supporting cells that co-expressed the hair cell marker Myo7a and the supporting cell marker Sox2, the regeneration gene therapy treated cochleae had significantly higher numbers of these cells (p < 0.05). Furthermore, among these treated cochleae, those that had more hair cell loss had a higher number of Myo7a positive supporting cells (R2=0.33, Pearson correlation analysis, p < 0.001). Overall, our results indicate that the adult cochlea possesses limited intrinsic spontaneous regenerative capacity, that can be further enhanced by genetic and epigenetic reprogramming.