Exosomes are naturally occurring nanocarriers derived from various cells. In recent years, they have attained significant attention for their potential in precise drug delivery and therapeutic applications. Exosomes exhibit several advantages, remarkably improved stability, bioavailability, and delivery efficiency, which are further augmented by integration with nanomaterials. Functionalizing the aptamer and nanomaterial on the exosomal surface significantly improves the binding affinity and specificity. Here in this review, we examine the synergistic therapeutic effect of exosome-nanomaterial-aptamer conjugate with particular attention to their uses in cancer therapy, bone fracture regeneration, wound healing, etc. Recent advances in the field demonstrated that the amalgamation of different nanomaterials, aptamers, and exosomes has proven to be a transformative approach in the field of therapeutics. Here in the nanocomposite, the aptamer is exclusively used as a recognition molecule to provide specificity to the target cells. Exosomes serve as biocompatible nanocarriers, and different nanomaterials (AuNPs, AuNRs, SiNPs, Graphene, etc.) complement the therapeutic efficiency by PTT/PDT/ROS generation/SO generation, etc. Briefly, the above-mentioned nanocomposite serves as the perfect therapeutic agent by utilizing the exosome's biocompatibility, aptamer's high affinity and nanomaterial's multifunctionality. Furthermore, the challenges and limitations of this nanocomposite have been discussed, along with its prospects in clinical practices.