BACKGROUNDInsulin resistance is the decreased effectiveness of insulin receptor function during signaling of glucose uptake. Insulin receptors are regulated by endocytosis, a process that removes receptors from the cell surface to be marked for degradation or for re-use.OBJECTIVESOur goal was to discover insulin-resistance-related genes that play key roles in endocytosis which could serve as potential biological targets to enhance insulin sensitivity.METHODSThe gene mutations related to insulin resistance were elucidated from ClinVar. These were used as the seed set. Using the GeneFriends program, the genes associated with this set were elucidated and used as an enriched set for the next step. The enriched gene set network was visualized by Cytoscape. After that, using the VisANT program, the most significant cluster of genes was identified. With the help of the DAVID program, the most important KEGG pathway corresponding to the gene cluster and insulin resistance was found. Eleven genes part of the KEGG endocytosis pathway were identified. Finally, using the ChEA3 program, seven transcription factors managing these genes were defined.RESULTSThirty-two genes of pathogenic significance in insulin resistance were elucidated, and then co-expression data for these genes were utilized. These genes were organized into clusters, one of which was singled out for its high node count of 58 genes and low p-value (p = 4.117 × 10-7). DAVID Pathways, a functional annotation tool, helped identify a set of 11 genes from a single cluster associated with the endocytosis pathway related to insulin resistance. These genes (AMPH, BIN1, CBL, DNM1, DNM2, DNM3, ITCH, SH3GL1, SH3GL2, SH3GL3, and SH3KBP1) are all involved in either clathrin-mediated endocytosis of the insulin receptor (IR) or clathrin-independent endocytosis of insulin-resistance-related G protein-coupled receptors (GPCR). They represent prime therapeutic targets to improve insulin sensitivity through modulation of transmembrane cell signaling. Using the ChEA3 database, we also found seven transcription factors (REST, MYPOP, CAMTA2, MYT1L, ZBTB18, NKX6-2, and CXXC5) that control the expression of these 11 genes. Inhibiting these key transcription factors would be another strategy to downregulate endocytosis.CONCLUSIONWe believe that delaying removal of insulin receptors from the cell surface would prolong signaling of glucose uptake and counteract the symptoms of insulin resistance.