AbstractBackgroundSpatial transcriptomics is a powerful tool that integrates molecular data with spatial information, thereby facilitating a deeper comprehension of tissue morphology and cellular interactions. In our study, we utilized cutting-edge spatial transcriptome sequencing technology to explore the development of the mouse heart and construct a comprehensive spatiotemporal cell atlas of early murine cardiac development.ResultsThrough the analysis of this atlas, we elucidated the spatial organization of cardiac cellular lineages and their interactions during the developmental process. Notably, we observed dynamic changes in gene expression within fibroblasts and cardiomyocytes. Moreover, we identified critical genes, such as Igf2, H19, and Tcap, as well as transcription factors Tcf12 and Plagl1, which may be associated with the loss of myocardial regeneration ability during early heart development. In addition, we successfully identified marker genes, like Adamts8 and Bmp10, that can distinguish between the left and right atria.ConclusionOur study provides novel insights into murine cardiac development and offers a valuable resource for future investigations in the field of heart research, highlighting the significance of spatial transcriptomics in understanding the complex processes of organ development.