Target |
Mechanism LOXL2 inhibitors [+1] |
Originator Org. |
Active Indication |
Inactive Indication- |
Drug Highest PhasePreclinical |
First Approval Ctry. / Loc.- |
First Approval Date20 Jan 1800 |
Target |
Mechanism LOXL2 inhibitors [+1] |
Active Org. |
Originator Org. |
Active Indication |
Inactive Indication- |
Drug Highest PhasePreclinical |
First Approval Ctry. / Loc.- |
First Approval Date20 Jan 1800 |
The lysyl oxidase (LOX) gene family encodes for a group of copper-dependent enzymes that play a crucial role in the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM). Dysregulation of LOX gene expression has been implicated in various pathological conditions, including cancer. Several studies have shown that the LOX gene family is involved in cancer progression and metastasis. The goal of this article is to conduct a comprehensive analysis of the LOX family's role in pan-cancer multiplexes. We utilized pan-cancer multi-omics sequencing data from TCGA to investigate the relationship between LOX family genes and tumors at four different levels: mutation, copy number variation, methylation, and gene expression. In addition, we also examined the relationship between LOX family genes and tumors at the cell line level using tumor cell line sequencing data from CCLE. Taking into account the impact of LOX family genes on lung cancer, we developed a LOX family lung cancer prognostic model to forecast the disease's prognosis. Our findings revealed that LOXL2 had the highest mutation frequency in tumors, while all four LOX family genes experienced some degree of copy number variation in diverse tumors. We observed that LOX, LOXL1 to LOXL3 were predominantly highly expressed in tumors including LUAD. The expression trends of LOX and LOXL1 to LOXL3 were consistent across tumor cell lines, but differed somewhat from LOXL4. Utilizing 25 LOX family-related genes, we constructed a LOX family prognostic model that performed well in predicting the prognosis of lung cancer. Through pan-cancer analysis, we gain further knowledge of the role of LOX family genes in different tumors, offering a novel pathway for future research into the relationship between LOX family genes and tumors.