Background. The growing body of evidence indicates aberrant expression of long noncoding RNAs (lncRNAs) in breast cancer. Nevertheless, a few studies have focused on identifying key lncRNAs for patients with luminal A breast cancer. In our study, we tried to find key lncRNAs and mRNAs in luminal A breast cancer. Methods. RNA sequencing was performed to identify differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) in luminal A breast cancer. The protein-protein interaction (PPI), DElncRNA-DEmRNA coexpression, DElncRNA-nearby DEmRNA interaction networks, and functional annotation were performed to uncover the function of DEmRNAs. Online databases were used to validate the RNA sequencing result. The diagnostic value of candidate mRNAs was evaluated by receiver operating characteristic (ROC) curve analysis. Results. A total number of 1451 DEmRNAs and 272 DElncRNAs were identified. Several hub proteins were identified in the PPI network, including TUBB3, HIST2H3C, MCM2, MYOC, NEK2, LIPE, FN1, FOXJ1, S100A7, and DLK1. In the DElncRNA-DEmRNA coexpression, some hub lncRNAs were identified, including AP001528.2, LINC00968, LINC02202, TRHDE-AS1, LINC01140, AL354707.1, AC097534.1, MIR222HG, and AL662844.4. The mRNA expression result of TFF1, COL10A1, LEP, PLIN1, PGM5-AS1, and TRHDE-AD1 in the GSE98793 was consistent with the RNA sequencing result. The protein expression results of TUBB3, MCM2, MYOC, FN1, S100A7, and TFF1 were consistent with the mRNA expression result COL10A1, LEP, PLIN1, PGM5-AS1, and TRHDE-AD1 were capable of discriminating luminal A breast cancer and normal controls. Four lncRNA-nearby and coexpressed mRNA pairs of HOXC-AS3-HOXC10, AC020907.2-FXYD1, AC026461.1-MT1X, and AC132217.1-IGF2 were identified. AMPK (involved LIPE and LEP) and PPAR (involved PLIN1) were two significantly enriched pathways in luminal A breast cancer. Conclusion. This study could be helpful in unraveling the pathogenesis and providing novel therapeutic strategies for luminal A breast cancer.