CRISPR-Cas genome editing technology has transformed genetic research, by enabling unprecedented precision in modifying DNA sequences across various organisms, including fish. This review explores the significant advancements and potential uses of CRISPR-Cas technology in the study and management of fish diseases, which pose serious challenges to aquaculture and wild fish populations. Fish diseases cause significant economic losses and environmental impacts, therefore effective disease control a top priority. The review highlights the pivotal role of CRISPR-Cas in identifying disease-associated genes, which is critical to comprehending the genetic causes of disease susceptibility and resistance. Some studies have reported key genetic factors that influence disease outcomes, using targeted gene knockouts and modifications to pave the way for the development of disease-resistant fish strains. The creation of such genetically engineered fish holds great promise for enhancing aquaculture sustainability by reducing the reliance on antibiotics and other conventional disease control measures. In addition, CRISPR-Cas has facilitated in-depth studies of pathogen-host interactions, offering new insights into the mechanisms by which pathogens infect and proliferate within their hosts. By manipulating both host and pathogen genes, this technology provides a powerful tool for uncovering the molecular underpinnings of these interactions, leading to the development of more effective treatment strategies. While CRISPR-Cas has shown great promise in fish research, its application remains limited to a few species, primarily model organisms and some freshwater fish. In addition, challenges such as off-target effects, ecological risks, and ethical concerns regarding the release of genetically modified organisms into the environment must be carefully addressed. This review also discusses these challenges and emphasizes the need for robust regulatory frameworks and ongoing research to mitigate risks. Looking forward, the integration of CRISPR-Cas with other emerging technologies, such as multi-omics approaches, promises to further advance our understanding and management of fish diseases. This review concludes by envisioning the future directions of CRISPR-Cas applications in fish health, underscoring its potential to its growing in the field.