Chronic hepatitis B infection (CHB) is a major risk factor for the development of hepatocellular carcinoma (HCC) globally and continues to pose a significant global health challenge. Jiawei Yinchenhao decoction (JWYCH) is a modified version of Yinchenhao decoction (YCHD), which is widely used to treat liver diseases including icteric hepatitis, cholelithiasis, and hepatic ascites. However, the effectiveness and underlying mechanism of JWYCH on CHB are still unclear. This study aimed to investigate the impact of JWYCH on CHB and explore the underlying mechanism via network pharmacology and metabolomics. C57BL/6 mice were administered rAAV-HBV1.3 via hydrodynamic injection (HDI) to establish the CHB model. The infected mice were orally administered JWYCH for 4 weeks. HBsAg, HBeAg, HBV DNA, the serum liver function index, and histopathology were detected. In addition, network pharmacology was used to investigate potential targets, whereas untargeted metabolomics analysis was employed to explore the hepatic metabolic changes in JWYCH in CHB mice and identify relevant biomarkers and metabolic pathways. JWYCH was able to reduce HBeAg levels and improve liver pathological changes in mice with CHB. Additionally, metabolomics analysis indicated that JWYCH can influence 105 metabolites, including pipecolic acid, alpha-terpinene, adenosine, and L-phenylalanine, among others. Bile acid metabolism, arachidonic acid metabolism, and retinol metabolism are suggested to be potential targets of JWYCH in CHB. In conclusion, JWYCH demonstrated a hepatoprotective effect on a mouse model of CHB, suggesting a potential alternative therapeutic strategy for CHB. The effect of JWYCH is associated mainly with regulating the metabolism of bile acid, arachidonic acid, and retinol. These differentially abundant metabolites may serve as potential biomarkers and therapeutic targets for CHB.