PURPOSEThe α7 nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α7 nAChRs PET radioligands, [18F]ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [18F]DBT-10 (7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [18F]ASEM in humans.METHODSPET scans with high specific activity [18F]ASEM or [18F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [18F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [18F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [18F]ASEM distribution volume (V T). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V T was assessed.RESULTSIn the rhesus monkey brain [18F]ASEM and [18F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [18F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [18F]ASEM V T. [18F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [18F]ASEM V T in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V T values ranging from 19.6 ± 2.5 mL/cm3 in cerebellum to 25.9 ± 2.9 mL/cm3 in thalamus. Test-retest variability of V T was 11.7 ± 9.8%.CONCLUSIONSThese results confirm [18F]ASEM as a suitable radiotracer for the imaging and quantification of α7 nAChRs in humans.