AbstractAn ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All
immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1β, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1β, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.