Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8+ T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities in vitro. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.