BACKGROUNDShugan Yiyang capsule (SGYY), a commonly used traditional Chinese medicine formulation, is primarily indicated for the treatment of erectile dysfunction, yet existing studies on the therapeutic effects on male infertility (MI) are insufficient and the specific mechanisms remain poorly understood. Given the close relationship between MI, sperm quality, and erectile function, this study aims to investigate the role of SGYY in the restoration of MI and explore the underlying mechanisms.METHODSThe efficacy of SGYY is comprehensively evaluated through pharmacodynamic, metabolomic, and network pharmacology. Sperm parameters, reproductive hormones, sexual behavior, neural enzymes, oxidative stress markers, pro-inflammatory cytokines, and testicular histopathology are measured to reveal the restorative effects of MI. Furthermore, urine and serum metabolomics, along with network pharmacology and surface plasmon resonance, are employed to explore the molecular mechanisms and predict core targets.RESULTSSGYY significantly improved overall health parameters, including body weight, water intake, urine output, food consumption, and spontaneous activity. Specifically, SGYY prominently recovered sexual behavior, ameliorated sperm quality, increased mitochondrial membrane potential, normalized reproductive hormones, upregulated endothelial nitric oxide synthase, attenuated oxidative stress markers, and pro-inflammatory cytokines, and repaired testicular pathological damage. Metabolomic analysis identified 47 candidate biomarkers, among which SGYY significantly modulated 39 potential biomarkers, encompassing 8 main metabolic pathways such as histidine metabolism, cysteine and methionine metabolism, propanoate metabolism, and taurine and hypotaurine metabolism. Additionally, network pharmacology predicted 8 core targets, comprising HSP90AA1, ESR1, MAPK1, CASP3, IL6, TNF, BCL2, and MAPK8.CONCLUSIONSGYY improves sperm quality and erectile function by regulating oxidative stress, energy metabolism, and neurological function, thereby exerting a restorative effect on MI, as evidenced by the modulation of 8 main metabolic pathways, 39 potential biomarkers, and 8 core targets. Pharmacodynamic provides foundational validation, metabolomic uncovers intrinsic metabolic changes, and network pharmacology predicts therapeutic targets, with findings from the 'Pharmaco-Metabo-Net' tripartite correlation analysis providing a solid theoretical strategy and scientific evidence to support the clinical application of SGYY in restoring MI.