In the realms of modern medicine and environmental monitoring, there is an escalating demand for bacterial detection technologies that are rapid, precise, and highly sensitive. Conventional methods, however, are often hindered by their time-intensive nature, procedural complexity, and reliance on specialized laboratory equipment. This study introduces an innovative approach utilizing bovine serum albumin (BSA) as the dielectric layer and lysozyme (LYZ) as the bacterial sensing layer in organic field-effect transistors (OFETs). The combination of BSA and LYZ enhances both biocompatibility and detection sensitivity, enabling precise differentiation between Gram-positive and Gram-negative bacteria. BSA not only stabilizes the electrical performance of the OFET but also offers biodegradability and water solubility, contributing to environmental sustainability. These biocompatible OFETs can accurately detect bacterial concentrations ranging from 104 to 108 CFU/mL, with real-time response capabilities via multispike measurements. This research represents a significant step forward in the development of advanced, portable biosensors for use in complex biological environments, advancing bacterial detection technology.