Oral mucosal ulcer is the most prevalent oral mucosal lesion, affecting over 25 % of general population. The current treatment regimens lack efficacy in addressing challenges such as wound bleeding, bacterial infection and inflammation on a continuous basis. Hence, a multi-functional oral gel (termed MPCST) with a long-acting duration is designed. It is based on a tannic acid-thioctic acid (TATA) supramolecular hydrogel which absorbs tissue exudate while exhibiting robust tissue adhesion properties. To form MPCST, TATA is loaded with MPCS, which are composed of polydopamine (PDA)-coated molybdenum disulfide (MoS2) nanoflakes (MoS2@PDA) with high photothermal conversion efficiency, nitric oxide (NO) precursor nitroprusside (SNP) and cerium oxide (CeO2) with high reactive oxygen species (ROS) scavenging rate. Upon exposure to 808 nm near-infrared (NIR) irradiation, MPCS rapidly heats up and releases NO to promote angiogenesis, while exhibiting strong ROS scavenging, antibacterial (including oral common Streptococcus mutans), and anti-inflammatory properties. Animal experiments show that the MPCST oral gel, composed of MPCS and TATA hydrogel, exhibits superior therapeutic efficacy compared to the commonly used dexamethasone patch.