Background:Diffuse parenchymal lung diseases have various conditions and CT imaging findings. Differentiating interstitial lung diseases (ILDs) and determining the presence or absence of usual interstitial pneumonia (UIP), can be challenging, even for experienced radiologists. To address this challenge, we developed a 3D-content-based image retrieval system (CBIR) and investigated its clinical usefulness.
Methods:Using deep learning technology, we developed a prototype system that analyzes thin-slice whole lung HRCT images, automatically registers them in a database, and retrieves similar images. To evaluate search performance, we used a database of 2058 cases and assessed image similarity between query and retrieved cases using a 5-point visual score (5: Similar, 4: Somewhat similar, 3: Neither, 2: Somewhat dissimilar, 1: Dissimilar). To assess clinical usefulness, we evaluated the concordance of labels (ILD/non-ILD, with/without UIP) between query and retrieved cases, using a database of 301 cases across 57 diseases.
Results:For search performance, the mean score of visual similarity between 70 queries and their top 5 retrieved cases was 4.37 ± 0.83. For clinical usefulness, label concordance between 25 queries and their top 5 retrieved cases was assessed across 4 labels. For ILD, the mean concordance of labels was 0.94 ± 0.15, while for non-ILD, it was 0.64 ± 0.31. For cases with UIP, the mean concordance of labels was 0.86 ± 0.17, while for cases without UIP, it was 0.83 ± 0.24.
Conclusions:Our CBIR system showed high accuracy for identifying cases with/without UIP, suggesting its potential to support UIP differentiation in clinical practice.